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EMPIRICAL BIVARIATE
QUANTILE-PARTITIONED
DISTRIBUTION

Epidemiologists sometimes collect bivariate
continuous data on a sample of individuals,
calculate the empirical quantiles* of the mar-
ginal data, and then partition the original data
into two-way contingency tables* with row and
column categories defined by these values [16].
For example, Pietinen et al. [13, 14] conducted
an extensive study on Finnish men aged 55-69
to test the reproducibility and validity of di-
etary measurement techniques. As part of this
study, the vitamin E intake of 157 men was
measured by a prospective food record diary
(X) and a retrospective food use questionnaire
(Y). In turn, these bivariate measurements were
partitioned into categories defined by the em-
pirical quintiles of the X and Y variables to
create Table 1 [4). The term empirical bivari-
ate quantile-partitioned (EBQP) distribution
describes the distribution of counts in such
tables [3].

Because the original data are partitioned by
the empirical quintiles, the marginal totals of

Table 1 EBQP Table for the Vitamin E
Data Partitioned by Empirical Quintiles

Food Use
Questionnaire Quintiles
Food
Record 1 5
Quintiles  (low) 2 3 4  (high) Total
1 (low) 13 13 4 1 0 31
2 9 9 7 4 2 31
3 7 5 7 7 6 32
4 2 2 12 9 6 31
5 (high) 0 2 2 10 18 32
Total 31 31 32 31 32 157

*Created from original data in a study by Pietinen
et al. [13], adapted from ref. [4].
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the rows and column are fixed at 31 or 32
observations, even though the interior counts
of the table are still random. For example,
12 individuals fell in both the fourth quin-
tile of the food record measurements and the
third quintile of the food use questionnaire
measurements.

The special case of 2 X 2 EBQP tables par-
titioned by empirical medians has received
considerable study. In 1899, Sheppard [15]
proposed studying the agreement between two
bivariate continuous measurements by con-
structing such tables. Blomqvist [1] discussed
a measure of agreement*, g, adapted from
Mosteller [12] for such tables. This measure,
called the medial correlation [10] or the quad-
rant measure [11], is algebraically equivalent
to Kendall’s tau* in 2 X 2 tables*. In order
to study the distribution of such statistics,
Blomgvist developed an exact theory and de-
rived an asymptotic variance for 2 X 2 tables
under certain regularity conditions, amended by
Konijn [10]. Elandt [6, 7] discussed the power
of Blomqvist’s exact test of independence un-
der bivariate normal alternatives.

Borkowf et al. [3] derived the asymptotic
normal distribution theory for the cell propor-
tions in r X ¢ EBQP tables, and gave a spe-
cial formula for the 2 X 2 case. They found, to
their surprise, that Blomqvist's asymptotic re-
sult for 2 X 2 EBQP tables was correct only
in special cases. Measures of agreement calcu-
lated from r X ¢ EBQP tables, such as kappa*
or weighted kappa, are functions of the cell pro-
portions in these tables. Hence, the asymptotic
normal distribution of these measures can be
derived from the asymptotic joint normal dis-
tribution of the cell proportions, and the vari-
ances of these measures can be calculated by
the delta method*.

The EBQP method of constructing tables
and the corresponding method of inference for
measures calculated from these tables are both
nonparametric*. By contrast, if one is willing to
assume that the original bivariate measurements
come from a particular parametric family, one
can estimate the parameters that determine the
shape of the underlying distribution, calculate
the parametric estimates of the population quan-
tiles, and then use these values to estimate the

expected counts in tables analogous to Table 1.
Borkowf and Gail [5] developed the parametric
method in order to study the asymptotic rela-
tive efficiency* of EBQP methods and to im-
prove the precision of estimates of measures of
agreement.

Here we review the asymptotic distribution
theory for r X ¢ EBQP tables, discuss the ef-
ficiency of EBQP methods compared to para-
metric methods, and illustrate the use of these
methods with an example.

NOTATION AND ASSUMPTIONS

Let the bivariate continuous sample {(X,, Y;)}
(k= 1,2,...,1) be iid. from the distribu-
tion F. Let F(x,v) have marginal distributions
G(x) and H(v) and conditional distributions
G(x|y) and H(v|x). Also, let F(x,y), G(x),
and A(y) denote the corresponding right-
continuous empirical distribution functions (see
EDF STATISTICS).

Next, let {y;}(i = 0,1,...,r) and {n;}(i

= 0,1,...,c¢) denote two increasing sets of
cumulative marginal proportions such that yq
= q9 = 0 and y, = n. = |. .For example,

for quintiles, r = ¢ = 5, y; = i/5, and n; =
J/5. In turn, define the population quantiles &;
= G '(y;) and ¢; = H™'(n;), the empirical
quantiles u; = inf{u : ¥, < G(u)} and v, =
inf{v : n; < H(v)}, the conditional proportions
vy = G(&i ly;) and 1y, = H(; | €), and the
cumulative proportions ¢,;; = F(&;,¢;).

It is assumed that g(x) = G'(x) and h(y) =
H'(y) exist and are positive at the selected pop-
ulation quantiles, so & = G™!(y;) and ¢; =
H™'(n;) are uniquely defined. It is also as-
sumed that F(x,v) is differentiable as a func-
tion of (x,v) at each (&, ;).

Then, the proportion of counts in the (i, j)th
category definedby u;—; < x < y;andv;—; <
y =y is

pij = Flui,vj) — Fuiz1,v;) — Fui,vj-1)
+ F(“i-l;"j—]). §))

Thus, the cell counts in the r X ¢ EBQP table
are given by {p;;1}. As 1 — =, each empir-
ical proportion p;; tends to the asymptotic
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parametric methods, the corresponding point es-
timates and SEs are £ = 0.242 *+ 0.027, &,, =
0.627 * 0.042, and &) = 0.551 = 0.031.

Under EBQP methods, K, depends on all
the cells of the table, whereas K depends only
on the diagonal cells and &;|, depends only
on the (1,1) cell. By contrast, parametric meth-
ods use information from all of the underlying
data through the parameter estimates (in this
case, the sample correlation) to estimate these
measures. Thus, it is not surprising that EBQP
methods are most efficient for estimating «,,
and least efficient for estimating « and a1,
compared to parametric methods.

DISCUSSION

The EBQP theory presented here yields results
that differ from those appropriate for statis-
tics calculated from tables with the multino-
mial distribution*. Such tables are obtained if
the original data are partitioned by the popula-
tion quantiles rather than the empirical quan-
tiles. Fleiss et al. [9] derived the asymptotic
variances of kappa and weighted kappa calcu-
lated from multinomial tables, but these vari-
ances, though correct for multinomial tables,
differ from the correct variances for statistics
calculated from EBQP tables [3].

As the above example illustrates, EBQP
methods can be inefficient compared to para-
metric methods for estimating certain measures
of agreement. For BVN data, EBQP estimates
of k and «a |, are less than 41% efficient for a
range of correlations and table dimensions stud-
ied in ref. [5]. By contrast, EBQP estimates of
K. become increasingly efficient as the table
dimensions increase, for moderate correlations.
The increased efficiency of parametric meth-
ods, however, comes at the risk of bias from
misspecifying the parametric model [5].

EBQP methods are most helpful when used
in conjunction with methods that directly ex-
amine the original bivariate continuous data. A
full discussion of EBQP and parametric meth-
ods in the epidemiological context appears in
ref. [4]. Sample computer code for performing
EBQP and parametric calculations appears in
ref. [2] and, at the time of this writing, can be
obtained from the first author.
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proportion
mij = F(éi, ;) = F(&imr, ;) ~ F(&,4;-1)
+ F(&io,¢-1). (2)

The empirical marginal proportions p;+ and
p+j are constant given f, while the asymp-
totic marginal proportions ;. = Yi = Yi-l
and 74; = n; — 5,_; are constant for all 1.

ASYMPTOTIC THEORY

Utilizing (1), the asymptotic Joint normal dis-
tribution, expectations, and covariances of
thAe {pij} can be derived from those of the
{F(ui, v} i

One can approximate F(u;, v;) in terms of
F(¢;, W) G(¢)), and ﬁ(l[lj). Define the vectors
A = (1: =Mjlis = Yilj) (J«,"j = (0, v:,7m,), and
wi; = (F(&i,4),G(&;), H(y;)). Then [3]

Flui,v;) = Aywy = pi) + 0,(67'2) . (3)
Since 1"(F — F,G -~ G,H — H) evaluated
at the population quantiles has an asymptotic
joint normal distribution, (3) implies that each
t'/zﬁ(ui,vj) tends to normality, and moreover
the vector 1"*{F(u;,v;)}; jointly tends to
normality.

Let m = min{i, k} and n = min{}, 1}. Then
[3] for every sample size ¢,

E[F (&, Uil = ¢, 4)

COV[’mF(fh'/’j)yf“zﬁ(fkyl//l)] = G — Pijdu;
&)

also G(x) = F(x,») and H(y) = F(,y), so
Yi = ¢ic and 5; = ¢,;. Thus, (5) implies that

COV[I l/2W,‘j, I'/ZW“]

¢mn - ¢ij¢kl ¢mj - ¢ij7k ¢in - ¢ij77/
=| bm— Yibw Ym — ViV bu — vim
P =i b~ Ve M — M

= -Qijkl- (6)
It follows from (4), (5), and (6) that
t2[F (ui, v;) — @] and t"2[F(up,vi) — dul
are jointly asymptotic normal with mean zero
and covariance

A Qijut Ay 7

In particular, the asymptotic variance of
t"z[ﬁ(u,-,vj) — ¢ij] can be written without
matrix notation as
¢i(1 = ¢i) + nZivil — 9) + Ym0 = 7))
= 2m105(1 — i) = 2y, — n;)

+ 2nv0 (i — vimg). (8)
In 2 X 2 tables partitioned by empirical medi-
ans, (8) reduces to Blomqvist’s result only when
Y111 = My = 3. This condition holds not
only under independence, but also for the bi-
variate normal (BVN) distribution with nonzero
correlation, for instance.

For most applications, the variances and co-
variances involve so many terms that it is es-
sential to use matrix notation and computer
calculations. For a discussion of parameter es-
timation and confidence interval construction,
see ref. [3].

ANALYSIS OF EXAMPLE

An analysis of the vitamin E data illustrates
the use of EBQP methods in epidemiology
[4]. To construct Table 1, several ties in the
vitamin E data were broken by adding tiny
random errors to the original data, but the man-
ner in which these ties were broken had only
a small effect on the resulting table. Consider
the following three measures of agreement:
kappa (), weighted kappa («,,) with quadratic
weights [8], and row proportions [16] (the pro-
portion of observations that fall in specified
columns of a table, given that they fall in a
specified row, e.g., ayy = 71/ 4+). These
measures and their variances can be estimated
using the methods in ref. 3], which re-
quire not only the cell counts but also the
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ods, the point estimates and standard er-
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are K = 0.196 = 0.056, &,, = 0.631 * 0.052,
and @, = 0419 = 0.076.

Normal probability plots and scatter plots of
the log-transformed vitamin E data suggest that
the original data are consistent with an underly-
ing bivariate lognormal distribution. Hence, the
log-transformed data are consistent with a BVN
distribution with correlation p = 0.681. Using
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The usual model for an epidemic*, as outlined
in Bailey [1], assumes that the spread of in-
fection depends on the law of mass action. If,
for example, we have a deterministic model in
which x(r) susceptibles (individuals liable to in-
fection) mix with y(z) infectives (infected in-
dividuals who can transmit the infection) in a

population at time t = 0, then in the absence
of a removal mechanism, the number of infec-
tives will increase at a rate proportional to the
product x(t)y(#).

While such a model provides a reasonable
representation of the spread of infection by con-
tacts between individuals, it is not entirely suit-
able for infections spread through the exchange
of needles among intravenous drug users (I'V-
DUs). Several authors, among them Doll [2],
have noted the rapid rise of AIDS cases in the
USA and other countries due to the exchange
of infected needles among IVDUs. While most
studies of epidemics among IVDUs have con-
centrated on HIV and AIDS, the models out-
lined below apply to any infection transmitted
by blood such as, for example, hepatitis.

Different models have been developed for
epidemics among IVDUs, of which two are typ-
ical. Firstly, Kaplan [3] has studied a determin-
istic model based on principles derived from the
mass action model. He first finds an equation for
the time-dependent probability that an IVDU
injects with an infected needle at time t = 0,
and then derives a differential equation involv-
ing a mass action factor for the fraction of in-
fected IVDUs at time ¢ in a shooting gallery. He
proceeds to analyze various factors such as the
sharing rates of injection equipment and their
heterogeneity, the mean duration of injection
equipment sharing, and the effect of cleaning
injection equipment after use. Kaplan provides
graphs to illustrate aspects of the model.

Secondly, Gani and Yakowitz [4] have con-
sidered a stochastic model where a group of
n IVDUs consisting of X(r) susceptibles and
Y(t) infectives, with X(¢) + Y(¢) = n, meets
regularly at times ¢ = 0, 1,2, .. ., to inject with
drugs. The probability of creating new infec-
tives at such a meeting was derived by Gani [5]
in the context of an occupancy problem*. The
susceptibles are thought of as cells, while the in-
fective IVDUs who pass their infected needles
to them are balls placed in these cells. Assum-
ing the random allocation of infected needles
among the susceptibles, and using the occu-
pancy probabilities, one can characterize X(z)
as a nonincreasing homogeneous Markov chain
whose transition probabilities can be found. It
is then easy to calculate the time until the
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